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EQUATIONS FOR THE INDUCED VELOCITIES NEAR A LIFTING ROTOR
WITH NONUNIFORM AZIMUTHWISE VORTICITY DISTRIBUTION

By Harry H. Heyson

SUMMARY

Equations, which can be integrated on high-speed computing machines,

are developed for all three components of induced velocity at an arbi-
trary point near the rotor and for an arbitrary harmonic variation of
vorticity. Sample calculations for vorticity which varies as the sine
of the azimuth angle indicate that the normal component of induced
velocity is, in this case, uniform along either side of the lateral
axis.

INTRODUCTION

The mutual interference between the rotors, wing, and tail of =a
helicopter or convertiplane may have a large effect upon the overall
performance and stability of the aircraft. Since mutual interference
may entail significant performance penalties, it is necessary to con-
sider such effects in the initial stages of design. The accurate
assessment of mutual interference, however, requires a knowledge of the
flow field of a lifting rotor. The most complete study of the induced
velocities near a lifting rotor is that of reference 1, which shows that
the flow may be calculated with reasonable accuracy provided that a
representative distribution of disk loading is assumed. The theory of
reference 1, however, is based upon existing induced velocity calcula-
tions. Since these calculations consider only the case of uniform
azimuthwise vorticity, the theory, as given in reference 1, can only
be used to represent disk loadings for which the circulation distribu-
tion is circularly symmetrical. As a consequence, the flow field,
according to reference 1, is symmetrical about the longitudinal plane
of symmetry of the rotor. The measured flow field of reference 1,
however, shows significant differences in the flow on opposite sides
of the rotor. Thus, it is desirable to examine the possibility of
extending the available theory to include the varying components of
vorticity which are known to exist in the wake of the rotor.



The calculation of the flow field is greatly complicated by the
inclusion of terms representing azimuthwise variations in circulation.
The only investigation which has considered these effects is that
described in reference 2, which examined the induced velocity distribu-
tion on the lateral axis of the rotor for sin ¢ circulation. The
actual calculation was based upon a crude approximation to the wake that
is believed to correspond to this distribution of circulation; further-
more, it is not possible to extend the analysis of reference 2 to points
other than those which lie on the lateral axis. Thus, it 1s necessary
to consider the problem from a different viewpoint if completely general
results are to be obtained.

The present paper develops equations for all three components of
induced velocity at an arbitrary point near the rotor and for an arbi-
trary harmonic of the azimuthwise distribution of circulation. This
derivation is accomplished without recourse to the aspproximations of
reference 2. Unfortunately, the final integration (with respect to V)
is not possible in closed form; however, numerical results may be
cbtained by the use of modern high-speed computing machines. As an
example, the distribution of the normal component of induced velocity on
the lateral axis is computed for sin ¥ circulation. These calculated
velocities are compared with those of reference 2.

SYMBOLS

vector distance from point P in space to vortex element
(fig. 1), ft

jov]

A =x" cos ¥+ y' sin V¥
B =12'" cos X - x' sin X

C = (y' cos ¥ - x" sin ¥) cos X - z' sin X sin ¥

as vector length of vortex element, ft
<Q£> constant portion of wake vorticity, ft/sec
dL 0
(V) Fourier sine-cosine series (normalized with respect to the

constant term (%%) ) describing the azimuthwise variation

0
of vorticity in the outer wake; the negative derivative of
f(y) describes the corresponding vorticity in the inner
wake
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X,Y,2

X,¥,2

unit direction vectors along X-, Y-, and Z-axes, respectively
running coordinate along edge of wake, ft

arbitrary point in space

vector induced velocity at P, ft/sec

rotor radius, ft

distance between P and edge of rotor disk at (fig. 1),

VRQ + x° + y2 + 2° - 2R(x cos ¥ + y sin V), ft
distance between P and center of rotor (fig. 1),

Vx2 + y2 + 22, ft

vortex~-element radius, measured parallel to tip-path plane
from wake axis (fig. 1(b)), ft

vector distance from origin to surface of cylindrical wake, ft

induced velocity components directed parallel to X-, Y-,
and Z-~axes, respectively, ft/sec

forward speed of rotor, ft/sec

normal component of induced velocity at center of rotor with
uniform radial and azimuthwise circulation, positive
upward, ft/sec

Cartesian coordinate system centered in rotor, X positive
rearward, Y positive on advancing side of rotor, and
Z positive upward

Cartesian coordinates of point P (fig. 1), ft

angle of attack of rotor tip-path plane, radians

blade circulation, ft2/sec

V sin a + W
QR

rotor inflow ratio,

V cos a

rotor tip-speed ratio, R



X wake skew angle, angle between axis of tip-path plane and

axis of wake, tan=1 %%, radians

) azimuth angle, measured in direction of rotation from down-
wind position (X-axis), radians

Q rotor rotational speed, radians/sec

Primes on symbols denote nondimensionalization with respect to R.
THEORY

Assumed Wake

The shape of the wake assumed as a basis for the present calcula-
tions is an extension of that used for previous rotary-wing induced-
velocity calculations (refs. 2 and 3, for example). Its general char-
acteristics are repeated herein for completeness.

The circulation on the blades is considered uniform along the
radius. (This assumption is in no way a restriction, since the results
obtained under it can be converted to correspond with any arbitrary
radial circulation distribution by the methods of ref. 1.) The free
vortices leave the blade tip and are carried off with the speed and
direction of the mean flow at the rotor. These vortices thus lie on
the surface of an elliptic cylinder (fig. 1(a)). The vortices are
assumed to be so closely spaced that the cylinder may be considered to
be a sheet of continuous vorticity. This assumption restriects the
analysis to obtaining only the time-averaged value of the induced veloc-
ity (ref. 4). The axial component of vorticisy is assumed to be negli-
gible. This assumption 1s equivalent to stating that the rotor tip
speed 1s infinite (ref. 5), so that the circulation is proportional
merely to the local disk loading.

The essential addition in the present analysis is that the wake
vorticity is allowed to vary in any arbitrary manner with the azimuth
position. As a consequence of this azimuthwise vorticity variation,
the blades must also shed vorticity at their “railing edges. Figure 2
illustrates this radial vorticity for a simple case in which the circu-
lation increases by an arbitrary constant over one sector of the rotor
disk. In practice, however, the circulation changes are continuous, so
that the wake cylinder will be completely filled with radial vorticity
of a strength proportional to the derivative of the circulation.
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he effect of the constant part of the blade circulation itself on
the induced velocities is zero on a time-averaged basis. This result is
not obtained, however, for the harmonic components of the blade circula-
tion. Nevertheless, this contribution is ignored in the present analysis
since it may be obtained relatively easily, and since it is zero in the
only numerical example considered herein.

The derivations which follow include all three compeonents of the
induced velocity. For convenience, the effects of the outer wake (the
circumferential vorticity around the cylinder) and the inner wake (the
radial vorticity within the cylinder) are considered separately.

Induced Velocities of Quter Wake

The induced velocities of the outer wake are found by integrating
the Biot-Savart law over the entire wake. Thus,

- 1l 4rds x a
dqg = — == =22 = 471, 1

From figure l(a), the following quantities may be determined by
inspection:

8 =1I(Rcos ¥ + L sin X) + j(R sin ¥) + k(-L cos X)
as = [Z(-R sin ¥) + j(R cos V) + l-c(O)J ay

& =3i(R cos ¥ + L sin X - x) + J(R sin ¥ - y) + K(-L cos X - 2)

Substituting these values into equation (1) and integrating yields

i 3 k
%r o«
-sin V¥ cos V¥ 0 dL dy
a=1+_R_ d_r‘(Rcosw+LsinX-x) (R sin ¥ - y) (-L cos X - z) (2)
n dL

3/2
0 “o ERcosw+LsinX-x)2+(Rsin\p-y)2+(-LcosX-z)§]
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If, now, ar is expressed as (QE) (v), where (QE) is the constant
L dL /g dL. /o

part of the vorticity, and where f(w) is a Fourier series in ¢ (nor-

malized with respect to the constant term), it is evident that the only

term which can produce a normal induced velocity at the center of the

rotor is the constant term. Thus, the induced velocity at the center of

the rotor is

- -ifdr 8
Yo = g(dL)O ( )
so that finally
2n -
W i_f () [1 - (x' cos ¥ +y' siny) + R.' sin X cos v)ay (9)
Yo en g ' [Rc' + (cos ¥ - x'")sin X + z' cos X]Rc'

Longitudinal component.- The longitudinal (or 1) component of the
induced velocity is, from equation (2),

21 oo
-R r dar (z + L cos X)cos ¥ dL ay (10)
br | aL 3/e
Jo o) [R2+x2+y2+22—2R(xcosw+ysinw)+2L(zcosX-xsinX+RsianosV)+L2J

u =

The integration follows in precisely the same manner as that for
the normal component. The final expression is found to be

= (z' + R X)cos ¥ dy
- z cos X)cos
Lo () < (11)
0 =2xn 0 [RC' + (cos ¥ - x')sin X + z' cos X]Rc'

Lateral component.- From equation (2), the lateral (or 3) com-
penent 1is

2n o
v - =R f ar (z + L cos X)sin y dL dy (12)
" Ix dL
; 3/2
Jo 0 [Rz+x2+y2+22

- R(x cos ¥+ y sin ¥) + 2L{z cos X - x sin X + R sin X cos W)+L2J

It is apparent that equation (12) differs from equation (lO) only
by a factor, tan X, which does not enter into the integration with



respect to L. Thus, the final expression for the lateral component
of induced velocity may be written immediately, on comparison with
equation (11), as

2

= i f(w)[

(z' + Ro' cos X)sin ¥ dy

Re' + (cos ¥ - x')sin X + z' cos X]Rc'

(13)

Tnduced Velocitles of Inner Wake

The induced velocities of the inner wake are found by integrating
over the wake, where now, from figure 1(v),

—~\0 3t

g =i(r cos ¥ + L sin X) + J(r sin ¥) + k(-L cos X)
ds = ['{(cos ¥) + J(sin ¥) + E(o)] ar
% = I(r cos ¥ + L sin X - x) + J(r sin ¥ - y) + k(-L cos X - z)

Substituting these expressions into equation (1) and integrating
yields

i 3 k
2 ~R .o -a/ar
a—\v(ai) cos ¥ sin ¥ 0 dL dr dy
§=§ (r cos ¥ + L sin X - x) (r sin ¥ - y) (-L cos X - z) 75 (1%
o JoJo [(rcosw+LsinX-x)2+(rsinw-})2+(-LcosX-z)2]

Normal component.- From equation (14), the normal (or k) com-
ponent of induced velocity is

an R -9;G§:>(x sin ¥ - y cos ¥ - L s°'n X sin ¥)aL ar d¥
wol v
Lx ! J
JO 0Y0 [1‘2+X2+y2+22—Qr(xcos\V+ysinv)+2L(zcwsX-xsinX+rsianosW)+L2]
(15)

3/2
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In certain cases, the argument of the inverse tangent term becomes
indeterminate. The limiting value, however, may be found by the repeated
application of L'Hopital's rule. Limiting values for a few of the more
important cases are given in the following table:

location of P Azimuth gngle, v, Arc tangent,
radians radians
0 + L
2
y:z:o
¢ 0
T X - &
2 2
X =2z =0
n 0
2

Longitudinal component.- The longitudinal (or E) component of
induced velocity is, from equation (14),

3/2 (23)

2 R
J J J i(£)(z + L cos X)sin v 4L dr dy
1 ay\ar
o Yo Jo

[r2+x2+y2+ze-2r(XCOS W+y51n¢)+2L(zcosx—xsinx+rsianosW)+L2]

Equation (23) may be integrated with respect to L to yield

2n ~R
a f 1 %G{)[Sm v] [z + cos >(\jr2 + x2 4 y2 + 22 - 2r(x cos ¥ + y sin w)}dr dy

L=
0 YO [Ir2+xz+y2+12-2r(xcosW+y51n'&)+zcosX-xsinX+rsianosv‘|'r2+x2+y2+22-2r(xcosv+vsinv)

(a4)

Integrating with respect to r, by means of equations (85)
and (Alk) of the appendix, results in
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is made in this paper to provide general flow charts for the various
harmonics of vorticity such as has been done previously for the case of
constant vorticity (for example, ref. 3). A few calculations for the
normal component of induced velocity on the lateral axis of the rotor
have been made for a unit sin ¥ vorticity. These cases are discussed
in the following sections.

Distribution of Induced Velocity on Lateral Axis

The calculated normal induced velocities are presented in figure 3
for the case of the lateral axis and a unit sin ¥ vorticity. The skew

angle is tan'l 4. The numerical results indicate that the induced veloc-
ities are uniform on either side of the axis and discontinuous at the cen-
ter of the rotor. This distribution corresponds to that of the assumed
sin ¥ vorticity distribution, which is also uniform on either side of

the axis but discontinuous at the center of the rotor. This close cor-
relation between vorticity (or disk load) distribution and the induced
velocities on the lateral axis was also noted in the experimentsl meas-
urements of reference 1.

The contribution of the inner and outer wakes individually is salso
shown in figure 3. The contribution of each part of the wake is a linear
function of radial position - the outer wake portion increasing, and the
inner wake portion decreasing with radlius. Except for positions close
to the edge of the rotor disk (y' > 0.85), the inner wake produces the
largest contribution to the total induced velccity for sin ¥ vorticity.

Reference 2 treats the induced velocitles due to sin ¥ vorticity
by means of a cruder approximation to the rotcr weke. It is interesting
to note that the actual induced velocity distribution (ref. 5) on the
lateral axis, as obtained under the assumptions of reference 2, should
be essentially the same, except in magnitude, as that obtained in the
present analysis. The simple analysis of reference 2 cannot, however,
be extended to locations other than the laterul axis.

Effect of Skew Angle

Since the absolute value of the induced relocity for sin ¥ vortic-
ity is constant on the lateral axls, the variation with skew angle can be
illustrated very compactly as in figure 4. Here the uniform value of
induced velocity is shown as a function of tan X for a range of skew
angles encompassing the major portion of the helicopter flight range. It
is evident that the effect of sin ¥ vorticity increases somewhat with
skew angle. The corresponding induced velocity from reference 2 for unit

sin ¢ vorticity is %L = 2.0, irrespective of skew angle. Thus, even
0

—~\0 -3t
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though a strict interpretation of the procedures of reference 2 leads
to the correct shape of the velocity distribution, it also leads to a
considerable overestimate of the magnitude of the induced velocities.

CONCLUDING REMARKS

Equations, which can be integrated by use of high-speed computing
machines, have been developed for all three components of induced veloc-
ity at an arbitrary point near the rotor and for an arbitrary harmonic
of the vorticity distribution. Results of this investigaticon of the
induced velocities near a lifting rotor with nonuniform azimuthwise
vorticity distribution show that for a vorticity distribution which
varies as the sine of the azimuth angle, the normal component of induced
velocity along either side of the lateral axis is uniform and antisymmet-
ric about the center of the rotor.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., March 10, 1960.
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APPENDIX

EVALUATION OF CERTAIN INTEGRALS OCCURRING IN THE ANALYSIS

The analysis of the inner wake involves integrals of the form,

/ﬁ X + (cix+ ayx and JF

where

X =8+ bx + x2

and where x 1is an arbitrary variable and a,
arbitrary constants.

dx
Ji + ex + d

b, c, and d are

Both forms may be evaluated by use of the substitution (item 235,

ref. 6),

u=W¥-x

The first form is the simpler of the two
first. The indicated substitution (eq. (Al))

2 du

(A1)

and will be evaluated
reduces this form to

(A2)

dx =
J/\x + (ex + dA)WX (c - 1)u? + (b - 2d)u

The right-hand side of equation (A2) may
of reference 6 to yield

+ (db - a - ac)

se integrated by item 67

(A3)

jp dx - jL tan'l[g(c -
X+ (ex + VX Va

where

q = kdb(c - 1) + ka1 - c2) -

1)u + b - 2d}

Va

(b - 24)° (k)

-\ = =
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The final expression is obtained by returning equation (A3) to the
original variable x which results in

jf dx _ it-tan‘l[2(c - l)(Vi - x) +b - Qd} (15)
X+ (ex +d)VX Va Va
where gq 1is as given previously in equation (A4).
L
7 Evaluation of the second form is a more lengthy task but proceeds
9 in the same manner. Making the same substitution (eq. (Al)) as before
7 yields
Jf dx : 2(bu - a - u¥)du (46)
- Erex+d (b-2u)[ud(c - 1) + ulb - 24) + (ab - & - ac)]
Now separate the right-hand side of equation (A6) into partial
fractions to obtain
f dx -1 f2du + _EC / u du
VX+cex+d 1+c b-2u 1+c¢ [u8(c - 1) + u(d - 24) + (ab - a - ac)]
- 24 f du (A?)
l+ec [u(c - 1) + u(b - 23) + (ab - & - ac)]

The first term may be integrated by inspection; the second term,
by item 72 of reference 6 to give

J/\VE +d§x i 1-i . loge(b - 2u) + ce(i I 1oge[u2(c -1)+u(d - 23) + (db - a - acﬂ

_bc-2df du
2 -1 [ue(c - 1) +u(b - 2d) + (db - a - ac)]

(a8)
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The remaining integral may be evaluated by means of item 67 of
reference 6 to yield

JF dx I log.(b - 2u)
X+ex+d l+ec

+ —Eil—— loge[ue(c -1) + 1(b - 2d) + (db - a - acﬂ
ce -1

_bc - 2d 2 tan'l[g(c - 1l)Ju+b - 2d] (A9)

Va

where q is defined in equation (Ak).

Returning equation (A9) to the original variable x results in

ax _={e-1) 4o % -
/ﬁ‘ﬁ+cx+d_c2-llge(b+2 2ﬁ)
+ 2c T log, {(ﬁ- x)g(c - 1) + (\/—)Z - x)(b -2d) + (dv - a - ac)J
_bc -2d 2 tan-l[e(c (- Jru- 2d] (A10)
c2 -1 Vq Va

Note that

(\/}?—X)E(c-l)+(\/)?—x)(b-2d)+(db-—a-ac):(b+2x-2&)(‘j)_(+cx+d)

so that the logarithmic terms of equation (Al10) may be combined to
yield

< loge(\f)_{_ + cx + d) + 1 loge(b + 2x - 2\[)_()

Jf dx _ 1
Vi.+ cx + d c2 -1 - |

_bc -2d 2 tan_l[g(c - 1)(\5( -x)+b - Qd} (A11)

¢ Va

cc -1 wi
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The presence of the logarithmic terms in equation (All) occasions
imaginary velues for the integral if either (fi + cx + d) or

(b + 2x - QJE) 1s negative. Provided that these terms are monotonically
negative, this result may be avoided as follows:

Rewrite equation (A7) as

f dx .1 2 du 2¢c f u du
WK+cex+ada 1+c 2u-b 1+ec [uz(l -c)+u(2d -v) - (@ - a - ac)J

. _=d JF du
l+ec [ue(c - 1) + u(b - 2d) + (db - a - ac)] (a12)

Integration, as in equation (A8), of the first two terms results in

f\l_ dx ==L 10g.(2u - 1) + 5 lloge[uz(l-c)+u(2d-b) - (db-a-ac)J
X+ex+d 1l+e cT -

_bc - 2d f[ du (A13)

@ -1 (e - 1) + u(b - 2d) + (@b - a - ac)}

Comparison of equations (A8) and (Al3) indicates that the only
difference is a reversal in sign of the arguments of the logarithmic
terms. Therefore, as long as these arguments are monotonically either
positive or negative, the final expression may be rewritten as

dx c 1
: = log IV§'+ cx + d‘ + —1_ 1og lb +2x -2 X'
J[\VX + cx + d c2 -1 € c2 -1 € V_

_be - 23 2 tan-l[2(c -1 (K - x) +b - 2dJ (A14)

-1 ya \a
where, again,

q = hab(e - 1) + ka1 - ¢®) - (b - 2a)2
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(a) Outer wake.

Figure 1.- Rotor wake system.

21



22

)
\

J
AR
x
<
/S
‘a /
/ "'

(b) Inner wake.

Figure 1.- Concluded.
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